
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2001; 37: 1–22 (DOI: 10.1002/fld.160)

Dissipative mechanism in Godunov-type schemes

Kun Xua,*,1 and Zuowu Lib

a Mathematics Department, The Hong Kong Uni�ersity of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong

b Computational Fluid Dynamics Laboratory, Beijing Uni�ersity of Aeronautics and Astronautics, Beijing, China

SUMMARY

This paper concerns the dissipative mechanism in the shock capturing schemes, where exact or
approximate Riemann solvers are used in the flux evaluation. More specifically, we are going to analyze
the dissipation in the flux vector splitting (FVS) scheme and the Godunov method, from which some
pathological phenomena from the FVS scheme and the Godunov method will be explained, such as the
artificial dissipation and the shock instability. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In order to capture the discontinuous shock transition in the discretized space, the dissipation
has to be introduced in the shock capturing schemes through physics or numerics. The shock
capturing schemes include mainly the flux vector splitting (FVS) and the flux difference
splitting (FDS) schemes. Even though both schemes have been successfully applied to a wide
range of engineering problems, the dissipative mechanism in these methods has not yet been
fully understood.

The flux vector splitting schemes are based on the splitting of flux function [11,14], where
the flux at a cell interface has the form Fj+1/2=F+(Wj)+F−(Wj+1), where Wj and Wj+1 are
the left and right states at a cell interface. In the above flux construction, there is no any
dynamical wave interaction between the left and right moving waves. In the present paper, we
are going to qualitatively evaluate the dissipation underlying the above physical model. For
example, the linear relationship between the numerical viscosity coefficient and the cell size, i.e.
�num���x, will be obtained. This linear relationship is intrinsically rooted in the above gas
evolution model, which is even true for second-order MUSCL-type FVS schemes.
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The exact Riemann solver implemented in the Godunov method accounts for the wave
interaction in the gas evolution stage [3]. The dissipation is zero in the Riemann solution due
to the use of the exact solution of inviscid equations. The numerical dissipation needed in the
Godunov method to construct a shock thickness on the order of cell size is genuinely and
mainly coming from the averaging process, i.e. the so-called initial reconstruction of constant
state inside each cell [16]. For the multi-dimensional flow simulation, the numerical dissipation
from the averaging depends on both the flow distribution and the mesh construction. In
certain situations, the elimination of the physical and numerical dissipation in the Godunov
method triggers the shock instability.

In this paper, Section 2 discusses a few numerical observations. Sections 3 and 4 present the
explanation of the numerical observations and the analysis of the dissipative mechanism in
both the FVS scheme and the Godunov method respectively. Section 5 concludes the paper.

2. NUMERICAL OBSERVATIONS

In this section, we are going to show a few numerical examples calculated by the Godunov and
the van Leer FVS schemes. In order to clearly distinguish the dynamics from the reconstruc-
tion and gas evolution stages, an identical initial reconstruction method will be used for both
schemes. In other words, any difference in the numerical solutions is solely due to the different
dynamics in the flux functions.

2.1. Second-order Goduno� and FVS schemes

Following van Leer’s MUSCL idea [13], the numerical scheme is composed of an initial
reconstruction stage followed by a dynamical evolution stage. At the beginning of each time
step t=0, cell averaged mass, momentum and energy densities are given. For a high-resolution
scheme, interpolation techniques must be used to capture the subcell structure. In the current
paper, the van Leer limiter is used to interpolate conservative variables directly.

Let xj= j�x ( j=0, 1, 2, . . . ) be a uniform mesh and �x the mesh size. Let xj+1/2=
( j+1/2)�x be the interface between cells j and j+1. The cell averaged conservative variable
is denoted by Wj= (�, �U, �V, �E)j

T, and its interpolated value in cell j is W� j(x), where the
two pointwise values W� j(xj−1/2) and W� j(xj+1/2) are located at the locations xj−1/2 and xj+1/2.
To second-order accuracy, the interpolated value in the jth cell can be written as

W� j(x)=Wj+L(Wj− l, . . . , Wj+ l)(x−xj) for xj−1/2�x�xj+1/2

where l is an integer and 2l+1 is the extent of the stencil. The van Leer limiter is used as the
interpolating function L

L(s+, s−)=S(s+, s−)
�s+ ��s− �

�s+ �+ �s− �
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where S(u, �)=sign(u)+sign(�) is defined in terms of sign-functions, and s+ = (Wj+1−Wj)/
�x and s− = (Wj−Wj−1)/�x are the corresponding slopes for the conservative variables.

In order to get a second order accuracy in time, we adapt the MUSCL-Hancock approach
[12]. Based on the interpolated conservative variables W� j(x) inside cell j, the values of W� at
two end points inside cell j are denoted by Wj

L=W� j(xj−1/2) and Wj
R=W� j(xj+1/2). Firstly, the

interpolated boundary values Wj
L and Wj

R are evolved by a half time step 1/2�t according to

W� j
L=Wj

L+
1
2

�t
�x

[F(Wj
L)−F(Wj

R)]

and

W� j
R=Wj

R+
1
2

�t
�x

[F(Wj
L)−F(Wj

R)]

Then, based on the new states

WL=W� j
R and WR=W� j+1

L

the exact Riemann problem is solved in the Godunov method, from which the numerical fluxes
can be obtained

Fj+1/2
I =F(Wj+1/2(0)).

Here Wj+1/2(0) denotes the value of Wj+1/2(x/t) at x/t=0, and I means the inviscid flux.
For the Navier–Stokes equations, we use a second-order central difference scheme to

evaluate the viscous flux across a cell interface Fj+1/2
V . The update of the conservative variables

inside each cell becomes

Wj
n+1=Wj

n+
�t
�x

(Fj−1/2
I +Fj−1/2

V −Fj+1/2
I −Fj−1/2

V )

For the van Leer FVS scheme, the only difference from the above Godunov method is that the
flux function Fj+1/2

I is obtained according to the flux vector splitting formulation [14].

2.2. Numerical results

In this subsection, we are going to compare the numerical results from the second-order
Godunov and van Leer FVS scheme in three test cases.

2.2.1. Shock structure calculation. The first test case is the standard Sod test case [10]. However,
instead of solving the inviscid Euler equations, we solve the Navier–Stokes equations with unit
Prandtl number directly, where the physical viscous coefficient �phy used in this case is set to
be a constant �phy=0.0001. With different cell sizes �x=1/N, where N=1600, 3200, 6400,
10 000, the captured shock structures are shown in Figures 1 and 2 from both the second-order
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Figure 1. Density distributions in the shock region using the second-order NS Godunov method for the
Navier–Stokes equations with �phy=0.0001. The solid line is the exact NS solution. The cell sizes used

are: (a) �x=1/1600; (b) �x=1/3200; (c) �x=1/6400; (d) �x=1/10 000.

Godunov and the van Leer FVS schemes, where the solid line is the exact Navier–Stokes
solution. The shock structures appear as mesh size goes down to 1/3200. The shock structures
constructed from both schemes are equally matched. Since the kinetic flux vector splitting
(KFVS) and FVS schemes have the same physical basis, it is not surprising that the
Navier–Stokes KFVS scheme of Chou and Baganoff [1] can also give an accurate shock
structure calculation.

2.2.2. Two-dimensional laminar boundary layer. In the following, we are going to test these
schemes in a laminar boundary layer. The computational domain is covered by a uniform
320×120 grid points with the cell sizes �x=1.0 and �y=1.0. The flat plate is placed at the
lower boundary ranging from xstart=79.5 to xend=320 with total length L=240. The inflow
condition at x= −� is

(�, U, V, p)�−�=
�

1, 3, 0,
9

�M2

�
Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22
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Figure 2. Density distributions in the shock region using the second-order NS van Leer FVS method for
the Navier–Stokes equations. The solid line is the exact NS solution. The cell sizes used are: (a)

�x=1/1600; (b) �x=1/3200; (c) �x=1/6400; (d) �x=1/10 000.

where M is the fixed Mach number with the value M=0.3 and �=1.4. In this test case, the
Reynolds number is defined by Re=UL/�phy, which is equal to Re=30 000 with the choice of
�phy=0.024.

No-slip boundary condition is imposed on the flat plate by creating two ‘ghost’ cells outside
the computational domain which reverse the velocities of the two cells above the flat plate. The
Euler boundary condition with x-direction velocity slip is used for the other part of the lower
boundary. An appropriate non-reflecting boundary condition based on the one-dimensional
Riemann invariants is used at the left and upper boundaries. For example, in the left
boundary, based on the Riemann invariants

R1=U−�+
2C−�

�−1
=U0+

2C0

�−1

and

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22
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R2=U1−
2C1

�−1
=U0−

2C0

�−1

where subscript ‘1’ refers to the first cell inside the computational domain, we can determine
the velocity U0 and the sound speed C0 in the first cell outside the left boundary. Also, with
the help of the entropy invariant condition

p−�

�−�
�

=
p0

�0
�

we can determine other conservative variables at the cell 0. The flow variables in the cell −1
are set to be equal to the corresponding values at the cell 0. Simple extrapolation of the
conservative variables is used at the right boundary.

The output normalized u velocity

u=U/U�

are taken at the locations x=150, 200, and 250, and the distance y above the flat plate is
normalized by

�=y
� U�

�phy(x−xstart)

Figures 3 and 4 show the u velocity distributions calculated by the Godunov and the van Leer
FVS schemes. The solid line is the exact Blasius solution. As shown in these figures, the
Godunov method can give accurate laminar boundary solution, while the FVS scheme can
hardly capture the correct shear layer. Since we have used the same initial reconstruction

Figure 3. u velocity distribution versus � obtained using the second-order NS Godunov method. The
output locations are at: (× ) x=150; (*) x=200; (�) x=250. The solid line is the exact Blasius

solution.
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Figure 4. u velocity distribution versus � obtained using the second-order NS van Leer FVS method. The
output locations are at: (× ) x=150; (*) x=200; (�) x=250. The solid line is the exact Blasius

solution.

technique in both schemes, the different behavior between the Godunov and FVS methods
must come from the gas evolution model, i.e. the dissipative mechanism underlying the flux
evaluation. A detail analysis will be presented in the next section.

Recently, Chou and Baganoff proposed a Navier–Stokes KFVS scheme [1]. In their paper,
they have tested the shock layer and showed that their NS KFVS scheme gives an accurate NS
solution. However, applying the Chou–Baganoff scheme to the above boundary layer prob-
lem, we find that their scheme behaves basically in the same way as the van Leer FVS scheme.
The u velocity distribution is shown in Figure 5.

Figure 5. u velocity distribution versus � obtained using the second-order NS Chou–Baganoff KFVS
method. The output locations are at: (× ) x=150; (*) x=200; (�) x=250. The solid line is the exact

Blasius solution.
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2.2.3. Odd–e�en decoupling case. Quirk [7] cataloged a few cases, which could trigger the
failure of upwinding schemes. In the following we test both the second-order Godunov and
FVS schemes in the odd–even decoupling case. This test is about a normal shock propagating
in the two-dimensional shock tube, where the location of central line is perturbed odd–evenly
with a magnitude of 10−6. As shown in Reference [7], any small fluctuation gets amplified
quickly in the Roe scheme [8], and the initial shock front is totally destroyed after the shock
propagating through some distance in the tube. Figure 6(a) shows the result from the
second-order Godunov method for solving the inviscid Euler equations, and Figure 6(b)–(d)
are from the Godunov method solving the corresponding Navier–Stokes equations. Figure
6(e) presents the result from the FVS scheme for the inviscid Euler equations. From these
figures, we can clearly observe that the Godunov method amplifies small perturbation and
gives large post-shock oscillations, and the shock instability is effectively removed by solving
the viscous governing equations. On the other hand, even solving the inviscid Euler equations,
the FVS scheme gives a non-oscillatory density distribution.

2.3. Summary

The above numerical observations show: (1) the Godunov and the FVS schemes behave both
nicely in the shock structure calculations; (2) the Godunov method does a good job in
boundary layer calculation, but the FVS scheme behaves poorly; (3) the FVS scheme has
intrinsic dissipation to suppress small flow perturbation in the strong shock case, and the
Godunov method does not. In the next sections, we are going to explain these observations
and analyze the dissipative mechanism in both schemes.

3. DISSIPATIVE MECHANISM IN THE FVS SCHEME

3.1. Numerical dissipation in the FVS flux function

Similar to the KFVS scheme, all FVS schemes have the same particles or waves free transport
mechanism. Physically, it means that the FVS scheme has the particle mean free path l� be
equal to the cell size �x. Since the viscosity coefficient �̄ is proportional to the mean free path,
i.e. �̄� c̄l� , where c̄ is the local sound speed, the artificial viscosity coefficient �̄ in the FVS
scheme is therefore proportional to the cell size �x, i.e. �num=��y or �num=��x [15].

In order to verify the above analysis, we have done a mesh refinement study in the boundary
layer case for the FVS scheme. The computation is done using the FVS scheme for the inviscid
Euler equations directly, and the no-slip boundary condition is imposed on the flat plate by
reversing the fluid velocities in the ghost cells. The numerical viscosity coefficient �num in the
FVS scheme is obtained by fitting its solution with the Blasius solution.

In Table I, we list the experimental data of the cell size �y and the corresponding viscosity
coefficient. Figure 7 shows this fitting process to get the above numerical viscosity coefficients.
As shown in Figure 7, at �y=1/3, the numerical boundary layer thickness from the FVS
scheme is thinner than the reference solution with �phy=0.024, so the numerical viscosity �num

is smaller than �phy. Figure 8 plots the data in Table I and clearly shows the linear dependence
between the cell size �y and the numerical viscosity coefficient �num. Based on the numerical

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22
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Figure 6. Density distributions of the two-dimensional Quirk problem [7], where the location of the
central line is perturbed odd–evenly. (a)–(d) are obtained using the second-order NS Godunov method
with: (a) �phy=0.0 (inviscid Euler solution); (b) �phy=0.0005; (c) �phy=0.001 and (d) �phy=0.0012. The

density distribution in (e) is obtained using the second-order van Leer FVS scheme with �phy=0.0.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22
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Table I. The viscosity coefficient versus cell size, where �phy=0.024 is a
reference.

1 2/3 1/2�y 1/3

1.9 1.45 1.17��num/�phys 0.86

data, we get the proportional coefficient ��0.11. This number is on the same order as the
theoretical analysis in Appendix A. If the Godunov method for the inviscid Euler equations is
used in the current study, even with the imposed no-slip boundary condition, it does not form
any boundary layer at all. In other words, even in the first cell above the flat plate, the fluid
velocity will keep the value of U−�. Therefore, the exact Riemann solver has intrinsic
�num=0.0 in this case.

Figure 7. Mesh refinement study of the van Leer FVS scheme for the inviscid Euler solutions in the
laminar boundary layer case, where no-slip boundary is imposed at the flat plate. The above boundary
layer is constructed purely from the numerical viscous effect. The dashline is obtained by changing the
viscosity coefficient of the Blasius solution to fit the numerical data at the location of x=200. The solid

line is the exact Blasius solution with �phy=0.024, which can be considered as a reference solution.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22
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Figure 8. The numerical viscosity coefficient �num/0.024 versus mesh size �y for the solutions in
Figure 7.

From this experiment, we can understand that the free transport mechanism underlying the
FVS scheme generates first-order dissipation. This is the basic reason for the robustness of the
FVS scheme, such as avoiding the shock instability. The FVS scheme is actually solving
viscous governing equations in the gas evolution stage due to its flux splitting mechanism
F=F+ +F−.

In order to capture the Navier–Stokes solutions, adaptive mesh is usually used in the
boundary layer calculations, where the mesh size is very small in the boundary layer and large
away from the boundary. If the FVS scheme is used here, due to the difference in the cell size,
the dissipation coefficient �num will be different at different locations of the boundary layer. As
a result, the similarity solution will be most likely lost, such as figure 10(a) shown in [2]. In our
case, since we are using a uniform mesh, the numerical viscosity coefficient keeps a constant
everywhere. Therefore, the similarity solution from the FVS scheme can be maintained, such
as the results shown in Figure 7.

The relationship �num���x is an intrinsic property of the FVS scheme. Even inside a shock
layer, this relation is still correct. Also, this relationship does not mean that the FVS scheme
cannot be used for the Navier–Stokes solutions. The condition for its use is that the physical

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22
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viscosity coefficient in the Navier–Stokes equations should be much larger than the numerical
one, i.e. �phy���x. As analyzed in the next subsection, this is true in the shock structure
calculation.

3.2. Different beha�ior of the FVS scheme in shock and boundary layers

As observed in Section 2, the FVS scheme behaves differently in the shock and boundary layer
calculations. The explanation can be the following.

Suppose we need N�10 cells to resolve the physical shock structure and the boundary layer.
Then, the shock thickness ls can be expressed as

ls�
�phy

s

�U
�N�x

where s means the shock case, and �U is the velocity jump. For the boundary layer, the
thickness lb becomes

lb�
��phy

b L
�U

�N�x

where b means boundary. In both cases, �phy refers to the physical viscosity coefficient. In the
boundary layer case, �U is the velocity jump from the surface of the flat plate U=0 to the
velocity U� at far upstream, and L is the length of the flat plate. Note that the velocity jump
in both shock and boundary cases can be considered on the same order as the test cases
presented in Section 2. From the above equations, the physical viscosity coefficients in both the
shock and boundary layers become

�phy
s �N�x�U and �phy

b �
(N�x)2�U

L

Suppose that we use the FVS scheme to simulate shock and boundary layers. Because the
numerical dissipation coefficient in the FVS scheme is proportional to the cell size in both flow
situations, i.e. �num���x, the ratio between the numerical and physical viscosity coefficients
are

�num

�phy

�
shock

�
�

N�U
(3.1)

in the shock region, and

�num

�phy

�
boundary

�
�L

N2�x�U

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22
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in the boundary layer case. Since L�N2�x in our boundary layer calculation in Section 2, the
above relation goes to

�num

�phy

�
boundary

�
�

�U
(3.2)

Comparing Equations (3.1) and (3.2), for the same amount of the numerical dissipation, the
numerical viscosity plays a much more important role in the boundary layer than that in the
shock layer once both layers are well resolved, such as N�10 grid points in both layers.

The good behavior of the FVS scheme in the shock structure calculation can be also
understood in the following. Because the physical shock thickness ls is on the order of particle
mean free path, in order to resolve it by N numerical cells the cell size �x must be much less
than ls, such as �x� ls=N�x. However, the numerical dissipation in the FVS scheme is
coming from the free transport on the scale of numerical mean free path �x. Since the
numerical mean free path is much less than the physical mean free path, the relation
�/(N�U)�1 is always true in the shock structure calculation. But, �/�U is not necessarily a
small number in the boundary layer calculation.

4. DISSIPATIVE MECHANISM IN THE GODUNOV METHOD

4.1. Dissipati�e mechanism in the Goduno� method

The Godunov method is based on the exact Euler solution, the so-called Riemann problem in
the gas evolution stage. The Riemann problem is defined as an initial value problem for the
Euler equations. In the one-dimensional case, with the following initial condition at t=0

(�, U, p)=
� (�L, UL, pL) x�0

(�R, UR, pR) x�0
(4.3)

A entropy-satisfying solutions of the Riemann solver consist of the wave structure: the left
state (�L, UL, pL) is connected to the right state (�R, UR, pR) by a 1-shock or 1-rarefaction
wave, a 2-contact discontinuity, and a 3-shock or a 3-rarefaction wave. The 2-contact
discontinuity separates two constant states (�I, U*, p*) and (�II, U*, p*), and (U, p) are
continuous across the contact discontinuity. For example, in Figure 9 the 1-wave is a
rarefaction and the 3-wave a shock. There is standard technique to obtain the solutions around
a contact discontinuity [12]. The physical dissipation in the Riemann solver is coming from the
formation and propagation of the shock waves. As shown in Figure 9, when fluid particles
across the shock wave, the entropy increase is automatically achieved. However, the above
physical dissipation only plays a minimal role in the construction of the numerical shock
thickness, which is on the order of cell size. For example, for a single stationary shock, if the
shock front is located exactly on the cell interface, the Godunov method could keep this
solution forever. In other words, the physical dissipation provided in the shock wave of the

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22



K. XU AND Z. LI14

Figure 9. Solution of the Riemann problem in the (x, t)-plane.

Riemann solution could only construct a zero thickness shock structure. If the above shock
front is not located exactly at a cell interface, the shock waves generated in the Riemann
solutions at adjacent cell boundaries will become even weaker, and they introduce even less
physical dissipation. Therefore, the main dissipation in the Godunov method must come from
other sources.

Besides the above physical dissipation, the numerical dissipation in the Godunov method is
coming from the averaging stage [16]. For example, in Figure 10 at the time step t= tn+1, the
wave structure inside cell j is lost due to the formation of a constant state. This averaging

Figure 10. Averaging process at the time step tn+1, where only the total mass, momentum and energy are
updated inside cell j. The smearing of the subcell structure is associated with the numerical dissipation.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22
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process is accompanied also by an entropy increase, and introduces numerical dissipation. In
the two-dimensional case, for any flow distribution with velocity (U1(x, y), U2(x, y)) and
density (�1(x, y), �2(x, y)), the amount of dissipation introduced in each cell due to the
averaging is equal to

�Ek=Ek−E� k (4.4)

where Ek is the total kinetic energy before the averaging and E� k is the kinetic energy after the
averaging. The difference in the kinetic energy is translated into thermal one. As an example,
we consider a flow distribution in the two cases in Figure 11, where there are two states
(�1, U1) and (�2, U2) which occupy equal volumes in both cells. From the conservations of the
mass and momentum, we have

�̄=
1
2

(�1+�2)

and

�̄U� =
1
2

(�1U1+�2U2)

As a result, the kinetic energy before the averaging is

Ek=
1
4

(�1(U1)2+�2(U2)2)

and after the averaging

E� k=
1
2

�̄U� 2

Figure 11. Two initial velocity distributions inside a numerical cell. After averaging, a uniform velocity
inside each cell is obtained.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22
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The difference in the kinetic energy is

�Ek=
1
4

�1�2

�1+�2

(U1−U2)2

So, the averaging stage in the Godunov method provides the following dissipation

dissipation�
�1�2

�1+�2

(U1−U2)2 (4.5)

In case (a) of Figure 11, a velocity jump from U1 to U2 will introduce numerical dissipation
automatically. In case (b) of Figure 11, due to the same velocity U1�U2, the numerical
dissipation introduced in the averaging stage diminishes. Since the flow distributions U1 and
U2 inside each cell are closely related to the mesh construction, the dissipation provided in the
averaging stage is therefore mesh-oriented. For example, if a two-dimensional normal shock is
in the x-direction and the mesh is also constructed along the x- and y-directions, the velocity
distribution in the x-direction in the cell around the shock front will be similar to that in
Figure 11(a). Along the y-direction, the velocity distribution at the shock front cell is close to
that shown in Figure 11(b).

4.2. The explanation of shock instability

The documented observations of shock instability are scattered in many papers. The influential
paper by Quirk for the first time systematically presented the observation and analysis [7].
Since then, the explanation of numerical shock instability has attracted much attention in
recent years. A short list of references includes [4–6,9] and references therein.

In order to have shock instability, such as the carbuncle phenomena or odd–even decou-
pling, the numerical shock front has to be aligned with the mesh. As a result, the averaging
dissipation (4.5) can be provided mainly in the direction normal to the shock front, such as in
the x-direction as shown in Figure 11(a). In the direction along the shock front, such as shown
in Figure 11(b), due to the equal velocities and the perfect ability of keeping the shear layer in
the exact Riemann solver, neither the numerical dissipation from the averaging, nor the
physical dissipation in the Riemann solution, will be provided.

Now let’s consider a stationary shock in the x-direction. As shown in Figure 12, the shock
front can be divided into supersonic M�1 and subsonic M�1 regions. There is a sonic line
M=1 between them. Inside the shock layer, numerical perturbation will most likely disturb
the fluid path away from the straight lines. As a result, the fluid trajectory can be considered
as moving in the quasi-one-dimensional nozzles. From the aerodynamics, we have

dU
U

= −
1

1−M2

dS
S

and

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22
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Figure 12. A numerical normal shock in the two-dimensional case. Due to the numerical perturbations,
the fluid path will deviate from the straight lines to form the quasi-one-dimensional flows. In the
supersonic side M�1, the numerical structure is stable to perturbation. In the subsonic side M�1, the

perturbation will be amplified to form instability.

dp
p

=
�M2

1−M2

dS
S

where S is the cross section, M is the mach number, and dU and dP are the velocity and
pressure changes along the fluid motion.

Case (1): For 0�M�1, an increase in velocity is associated with a decrease in area, and
vice versa. Therefore, the velocity increases (pressure decreases) in a converging stream-
line case and velocity decreases (pressure increases) in a diverging streamline case.
Case (2): For M�1, the velocity increases (pressure decreases) in the diverging stream-
line case and velocity decreases (pressure increases) in the converging streamline case.

In the subsonic region, once there is perturbation inside the numerical shock layer, an
increase of velocity is associated with a decrease of pressure, and the converging of stream-
lines. Physically, the shear viscosity will strongly take effect to reduce the velocity differ-
ences and stabilize the numerical shock structure. However, following the inviscid Euler
solution (Riemann problem) in the y-direction, the only dynamical influence involved in the
exact Riemann solution in this direction is the slight pressure difference. The fluid in the
higher pressure region will move toward to the low pressure region. As a consequence, in
the subsonic side the fluid pressure in the low pressure region will get even lower, and the
high velocity gets even higher in the converging streamline case. So, is the instability
formed. The instability also happens in the diverging streamline case in the subsonic region.
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In the supersonic region, in the converging streamline case an increase in velocity will be
associated with an increase in pressure. So, the central high pressure region could expand and
stop the converging of the streamlines. Therefore, in the upstream side with M�1, the flow
structure is basically stable to any small perturbation.

Figure 13 shows the density distributions in Figure 6(a) along the x-direction at different y
locations, which clearly shows that the density fluctuation gets amplified in the downstream
region M�1. The numerical observation confirms the above analysis.

The above analysis of the dissipative mechanism in the Godunov method also validates the
following numerical observation. If the shock front is not precisely aligned with the mesh, the
velocity differences between U1 and U2 will appear in both directions around the shock front.
As a result, the averaging dissipation will be provided in both directions. For example, when
the shock front in Figure 6 is tilted by 10°, the new density distribution in the shock tube is
shown in Figure 14, where the averaging dissipation takes effect in both directions to eliminate
the shock instability.

Figure 13. Density distributions of Figure 6(a) along the x-direction at different y locations. The density
fluctuation is amplified in the downstream region M�1, which is consistent with the physical argument

in the current paper and Figure 12.
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Figure 14. Density distribution calculated by the second-order Godunov method for the inviscid Euler
equations. The shock jump and the flow perturbation are the same as that in Figure 6(a) except the
normal shock front is tilted by 10° with respect to y-axis. As a result, the numerical dissipation due to
averaging takes effect in both directions. Any post-shock oscillation is Figure 6(a) is effectively

eliminated.

5. CONCLUSION

In this paper, we have tested the Godunov and the FVS schemes in the shock structure,
boundary layer, and two-dimensional shock tube cases. At the same time, we analyze the
dissipative mechanism in both schemes. The conclusion is that for the FVS schemes the
numerical viscosity coefficient intrinsically rooted in the flux function is proportional to the
cell size �num��x. This is related to the wave free transport mechanism in the FVS schemes.
Therefore, the FVS scheme is basically solving a viscous governing equation and the viscosity
coefficient in the numerical fluid depends on the local mesh size. Even with the varying
numerical viscosity coefficient, the dissipative mechanism in the FVS scheme are basically
consistent with the Navier–Stokes terms. This is one of the reasons for the robustness of the
FVS scheme. Also, the reason for the different behaviors of the FVS schemes in the shock and
boundary layer calculations is pointed out.

On the other hand, the Godunov method gives accurate results in both shock structure and
boundary layer calculations due to its absence or minimal dissipation in the exact Riemann
solution. The necessary numerical dissipation in the Godunov method is solely coming from
numerics, such as the averaging process in the construction of the constant state inside each
cell. Unfortunately, this kind of dissipation depends on both the flow distribution and the
mesh construction, and they are not always consistent with the Navier–Stokes viscous terms.
The absence of numerical and physical dissipation in special cases could amplify the shock
instabilities.

ACKNOWLEDGMENTS

We would like to thank Professor Hui for helpful discussions. Support was provided by the Hong Kong
Research Grant Council through RGC97/98.HKUST6166/97P.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 1–22



K. XU AND Z. LI20

APPENDIX A. THE NUMERICAL VISCOUS EFFECT IN THE VAN LEER FVS
SCHEME

For two adjacent cells inside the boundary layer in the y-direction, the flow distribution can
be described by the following figure.

For a second-order scheme, from the cell averaged velocities ua, ub, and the corresponding
values in surrounding cells, we can use the van Leer limiter to get u �a and u �b as the interpolated
velocities at the cell interface j+1/2. Due to the differences in the magnitudes of u �a and u �b,
the van Leer splitting flux function gives a net flux of x-momentum transport across the cell
interface, which has the amount of

�=
1
4

�c(u �b−u �a) (5.6)

where c is the sound speed. At the same time, according to the shear stress definition, we have

�=��
du
dy

(5.7)

and du/dy can be formally defined as

du
dy

=
ub−ua

�y

From Equations (5.6) and (5.7), we get the following viscosity coefficient � in the second-order
van Leer FVS scheme

�=
1
4

c
u �b−u �a
ub−ua

�y (5.8)

The above linear relation between � and cell size �y is consistent with the numerical
observation in Section 2. For the first-order FVS scheme, the numerical viscosity coefficient
becomes
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�=
1
4

c�y

Now let’s apply Equation (5.8) to the Blasius boundary layer solution. First, taking a few
points in the boundary layer, such as

from which we have ua=0.39378 and ub=0.62977. The van Leer limiter then gives u �a=0.5177
and u �b=0.5271. In the laminar boundary case in Section 2, we have the pressure p=9/
(�M2)=71.4 and the sound speed c=��p/�=9.997. Therefore, the numerical viscosity
coefficient becomes

�=
1
4

c
u �b−u �a
ub−ua

�y=0.099�y

which has a good agreement with the numerical observation in Section 2, i.e. �num=0.11�y.
For the first-order FVS scheme, the numerical viscosity coefficient becomes �=2.449�y,
which is much larger than that in the so-called second-order scheme.

As observed in Equation (5.8), the viscosity coefficient depends on the interpolated veloc-
ities at the cell interface u �a and u �b. Theoretically, if a third-order interpolation is used, the
difference between the values u �a and u �b will be on the order of O((�y)2), so is the viscosity
coefficient. Practically, many high-resolution FVS schemes have been developed for the
Navier–Stokes equations [2]. But, the performance of these schemes based on the FVS flux
function will depend sensitively on the interpolation method. In the coarse mesh case, such
as with five or six grid points in the boundary layer, it is hard to imagine that there would
be a perfect interpolation technique to remedy the deficiency in the physical model. Even
though high-order interpolation could reduce the numerical dissipation in the FVS scheme,
it does not remove the problem from the root. This can be clearly understood when we
compare the FVS scheme and the Godunov method. For the Godunov method, whatever
the interpolated values u �a and u �b are, it will always keep the velocity difference and give
zero x-momentum transport due to its correct capturing of the inviscid Euler solutions.
But, the FVS scheme tells a different story once there is any velocity difference between u �a
and u �b. Note that the Godunov method will also tell us a different story if the shear layer
is not aligned with the mesh distribution, where the averaging dissipation may poison the
physical solution.
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